Search results
Results from the WOW.Com Content Network
The annealing temperature during a polymerase chain reaction determines the specificity of primer annealing. The melting point of the primer sets the upper limit on annealing temperature. At temperatures just above this point, only very specific base pairing between the primer and the template will occur. At lower temperatures, the primers bind ...
The annealing temperature during a polymerase chain reaction determines the specificity of primer annealing. The melting point of the primer sets the upper limit on annealing temperature. At temperatures just below this point, only very specific base pairing between the primer and the template will occur.
A strip of eight PCR tubes, each containing a 100 μL reaction mixture Placing a strip of eight PCR tubes into a thermal cycler. The polymerase chain reaction (PCR) is a method widely used to make millions to billions of copies of a specific DNA sample rapidly, allowing scientists to amplify a very small sample of DNA (or a part of it) sufficiently to enable detailed study.
In the first PCR, one pair of primers is used to generate DNA products, which may contain products amplified from non-target areas. The products from the first PCR are then used as template in a second PCR, using one ('hemi-nesting') or two different primers whose binding sites are located (nested) within the first set, thus increasing specificity.
The result is a stem-loop primer that excludes annealing involving shorter overlaps, but permits annealing of the primer to its fully complementary sequence in the target. Chimeric primers: some DNA bases in the primer are replaced with RNA bases, creating a chimeric sequence. The melting temperature of a chimeric sequence with another chimeric ...
Primers should not easily anneal with other primers in the mixture; this phenomenon can lead to the production of 'primer dimer' products contaminating the end solution. Primers should also not anneal strongly to themselves, as internal hairpins and loops could hinder the annealing with the template DNA.
It performs a fast, gapless alignment to test the complementarity of the primers to the target sequences. Probable PCR products can be found for linear and circular templates using standard or inverse PCR as well as for multiplex PCR. Dicey [15] is free software that outputs in-silico PCR products from primer sets provided in a FASTA file.
The primer design for all primers pairs has to be optimized so that all primer pairs can work at the same annealing temperature during PCR. Multiplex-PCR was first described in 1988 as a method to detect deletions in the dystrophin gene. [1] It has also been used with the steroid sulfatase gene. [2]