enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperparameter optimization - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_optimization

    In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2]

  3. Self-modifying code - Wikipedia

    en.wikipedia.org/wiki/Self-modifying_code

    Traditional machine learning systems have a fixed, pre-programmed learning algorithm to adjust their parameters. However, since the 1980s Jürgen Schmidhuber has published several self-modifying systems with the ability to change their own learning

  4. List of artificial intelligence projects - Wikipedia

    en.wikipedia.org/wiki/List_of_artificial...

    Blue Brain Project, an attempt to create a synthetic brain by reverse-engineering the mammalian brain down to the molecular level. [1] Google Brain, a deep learning project part of Google X attempting to have intelligence similar or equal to human-level. [2] Human Brain Project, ten-year scientific research project, based on exascale ...

  5. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  6. Massive Online Analysis - Wikipedia

    en.wikipedia.org/wiki/Massive_Online_Analysis

    MOA is an open-source framework software that allows to build and run experiments of machine learning or data mining on evolving data streams. It includes a set of learners and stream generators that can be used from the graphical user interface (GUI), the command-line, and the Java API.

  7. CatBoost - Wikipedia

    en.wikipedia.org/wiki/Catboost

    It works on Linux, Windows, macOS, and is available in Python, [8] R, [9] and models built using CatBoost can be used for predictions in C++, Java, [10] C#, Rust, Core ML, ONNX, and PMML. The source code is licensed under Apache License and available on GitHub. [6] InfoWorld magazine awarded the library "The best machine learning tools" in 2017.

  8. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...

  9. XGBoost - Wikipedia

    en.wikipedia.org/wiki/XGBoost

    XGBoost initially started as a research project by Tianqi Chen [12] as part of the Distributed (Deep) Machine Learning Community (DMLC) group. Initially, it began as a terminal application which could be configured using a libsvm configuration file.