enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    A basic 3D rotation (also called elemental rotation) is a rotation about one of the axes of a coordinate system. The following three basic rotation matrices rotate vectors by an angle θ about the x-, y-, or z-axis, in three dimensions, using the right-hand rule—which codifies their alternating signs.

  4. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    A representation of a three-dimensional Cartesian coordinate system. In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point.

  5. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Another application is ergonomic design, where r is the arm length of a stationary person and the angles describe the direction of the arm as it reaches out. The spherical coordinate system is also commonly used in 3D game development to rotate the camera around the player's position [4]

  6. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Specifying the coordinates (components) of vectors of this basis in its current (rotated) position, in terms of the reference (non-rotated) coordinate axes, will completely describe the rotation. The three unit vectors, û, v̂ and ŵ, that form the rotated basis each consist of 3 coordinates, yielding a total of 9 parameters.

  7. Standard basis - Wikipedia

    en.wikipedia.org/wiki/Standard_basis

    Every vector a in three dimensions is a linear combination of the standard basis vectors i, j and k.. In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as or ) is the set of vectors, each of whose components are all zero, except one that equals 1. [1]

  8. Vertex (computer graphics) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(computer_graphics)

    Most attributes of a vertex represent vectors in the space to be rendered. These vectors are typically 1 (x), 2 (x, y), or 3 (x, y, z) dimensional and can include a fourth homogeneous coordinate (w). These values are given meaning by a material description. In real-time rendering these properties are used by a vertex shader or vertex pipeline.

  9. Coordinate vector - Wikipedia

    en.wikipedia.org/wiki/Coordinate_vector

    Coordinates are always specified relative to an ordered basis. Bases and their associated coordinate representations let one realize vector spaces and linear transformations concretely as column vectors, row vectors, and matrices; hence, they are useful in calculations.