Search results
Results from the WOW.Com Content Network
Electrophilic substitution reactions are chemical reactions in which an electrophile displaces a functional group in a compound, which is typically, but not always, aromatic. Aromatic substitution reactions are characteristic of aromatic compounds and are common ways of introducing functional groups into benzene rings.
Substitution reactions in organic chemistry are classified either as electrophilic or nucleophilic depending upon the reagent involved, whether a reactive intermediate involved in the reaction is a carbocation, a carbanion or a free radical, and whether the substrate is aliphatic or aromatic. Detailed understanding of a reaction type helps to ...
Sulfur trioxide or its protonated derivative is the actual electrophile in this electrophilic aromatic substitution. To drive the equilibrium, dehydrating agents such as thionyl chloride can be added: [2] C 6 H 6 + H 2 SO 4 + SOCl 2 → C 6 H 5 SO 3 H + SO 2 + 2 HCl. Historically, mercurous sulfate has been used to catalyze the reaction. [3]
Electrophilic aromatic substitution (S E Ar) is an organic reaction in which an atom that is attached to an aromatic system (usually hydrogen) is replaced by an electrophile. Some of the most important electrophilic aromatic substitutions are aromatic nitration , aromatic halogenation , aromatic sulfonation , alkylation Friedel–Crafts ...
In organic chemistry, an azo coupling is an reaction between a diazonium compound (R−N≡N +) and another aromatic compound that produces an azo compound (R−N=N−R’).In this electrophilic aromatic substitution reaction, the aryldiazonium cation is the electrophile, and the activated carbon (usually from an arene, which is called coupling agent), serves as a nucleophile.
Halogenation of saturated hydrocarbons is a substitution reaction. The reaction typically involves free radical pathways. The regiochemistry of the halogenation of alkanes is largely determined by the relative weakness of the C–H bonds. This trend is reflected by the faster reaction at tertiary and secondary positions.
Formylation reactions are a form of electrophilic aromatic substitution and therefore work best with electron-rich starting materials. Phenols are a common substrate, as they readily deprotonate to excellent phenoxide nucleophiles. Other electron-rich substrates, such as mesitylene, pyrrole, or fused aromatic rings can also be expected to react.
The electrophilic Br-Br molecule interacts with electron-rich alkene molecule to form a π-complex 1. Forming of a three-membered bromonium ion The alkene is working as an electron donor and bromine as an electrophile. The three-membered bromonium ion 2 consisted of two carbon atoms and a bromine atom forms with a release of Br −.