enow.com Web Search

  1. Ad

    related to: graphing tangent graphs equation

Search results

  1. Results from the WOW.Com Content Network
  2. Implicit curve - Wikipedia

    en.wikipedia.org/wiki/Implicit_curve

    Plane curves can be represented in Cartesian coordinates (x, y coordinates) by any of three methods, one of which is the implicit equation given above. The graph of a function is usually described by an equation = in which the functional form is explicitly stated; this is called an explicit representation.

  3. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  4. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    This leads to the definition of the slope of the tangent line to the graph as the limit of the difference quotients for the function f. This limit is the derivative of the function f at x = a, denoted f ′(a). Using derivatives, the equation of the tangent line can be stated as follows: = + ′ ().

  5. Envelope (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(mathematics)

    Geometrically, the graph of v(x) is everywhere tangent to the graph of some member of the family u(x;a). Since the differential equation is first order, it only puts a condition on the tangent plane to the graph, so that any function everywhere tangent to a solution must also be a solution.

  6. Folium of Descartes - Wikipedia

    en.wikipedia.org/wiki/Folium_of_Descartes

    The curve was first proposed and studied by René Descartes in 1638. [1] Its claim to fame lies in an incident in the development of calculus.Descartes challenged Pierre de Fermat to find the tangent line to the curve at an arbitrary point since Fermat had recently discovered a method for finding tangent lines.

  7. Slope field - Wikipedia

    en.wikipedia.org/wiki/Slope_field

    The slope field can be defined for the following type of differential equations ′ = (,), which can be interpreted geometrically as giving the slope of the tangent to the graph of the differential equation's solution (integral curve) at each point (x, y) as a function of the point coordinates.

  8. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    An example of a stationary point of inflection is the point (0, 0) on the graph of y = x 3. The tangent is the x-axis, which cuts the graph at this point. An example of a non-stationary point of inflection is the point (0, 0) on the graph of y = x 3 + ax, for any nonzero a. The tangent at the origin is the line y = ax, which cuts the graph at ...

  9. Cusp (singularity) - Wikipedia

    en.wikipedia.org/wiki/Cusp_(singularity)

    A rhamphoid cusp (from Greek 'beak-like') denoted originally a cusp such that both branches are on the same side of the tangent, such as for the curve of equation = As such a singularity is in the same differential class as the cusp of equation x 2 − y 5 = 0 , {\displaystyle x^{2}-y^{5}=0,} which is a singularity of type A 4 , the term has ...

  1. Ad

    related to: graphing tangent graphs equation