Search results
Results from the WOW.Com Content Network
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Einstein notation is used throughout this article. This article uses the "analyst's" sign convention for Laplacians, except when noted otherwise. This article uses the "analyst's" sign convention for Laplacians, except when noted otherwise.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The text here uses Einstein notation in which summation over repeated indices is assumed. Two types of derivatives are used: Partial derivatives are denoted either by the operator ∂ i {\displaystyle \partial _{i}} or by subscripts preceded by a comma.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The Einstein field equation (EFE) describing the geometry of spacetime is given as = where is the Ricci tensor, is the Ricci scalar, is the energy–momentum tensor, = / is the Einstein gravitational constant, and is the spacetime metric tensor that represents the solutions of the equation.