Search results
Results from the WOW.Com Content Network
Viscosity is a measure of a fluid's dynamic resistance to a change in shape or to movement of its neighboring portions relative to one another. [1] For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. [2]
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
The kinetic theory of gases allows accurate calculation of the temperature-variation of gaseous viscosity. The theoretical basis of the kinetic theory is given by the Boltzmann equation and Chapman–Enskog theory, which allow accurate statistical modeling of molecular trajectories.
The gas viscosity model of Chung et alios (1988) [5] is combination of the Chapman–Enskog(1964) kinetic theory of viscosity for dilute gases and the empirical expression of Neufeld et alios (1972) [6] for the reduced collision integral, but expanded empirical to handle polyatomic, polar and hydrogen bonding fluids over a wide temperature ...
The viscosity equation further presupposes that there is only one type of gas molecules, and that the gas molecules are perfect elastic and hard core particles of spherical shape. This assumption of elastic, hard core spherical molecules, like billiard balls, implies that the collision cross section of one molecule can be estimated by σ = π ...
For instance, it is 0 in a monatomic gas at low density (unless the gas is moderately relativistic [3]), whereas in an incompressible flow the volume viscosity is superfluous since it does not appear in the equation of motion. [4] Volume viscosity was introduced in 1879 by Sir Horace Lamb in his famous work Hydrodynamics. [5]
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
With a good equation of state and good functions for the dependence of parameters (such as viscosity) on the variables, this system of equations seems to properly model the dynamics of all known gases and most liquids.