Search results
Results from the WOW.Com Content Network
The hydrophobic effect was found to be entropy-driven at room temperature because of the reduced mobility of water molecules in the solvation shell of the non-polar solute; however, the enthalpic component of transfer energy was found to be favorable, meaning it strengthened water-water hydrogen bonds in the solvation shell due to the reduced ...
Examples of hydrophobic molecules include the alkanes, oils, fats, and greasy substances in general. Hydrophobic materials are used for oil removal from water, the management of oil spills, and chemical separation processes to remove non-polar substances from polar compounds. [2] Hydrophobic is often used interchangeably with lipophilic, "fat ...
This arises from the fact that polar solvents stabilize the formation of the carbocation intermediate to a greater extent than the non-polar-solvent conditions. This is apparent in the ΔE a, ΔΔG ‡ activation. On the right is an S N 2 reaction coordinate diagram. Note the decreased ΔG ‡ activation for the non-polar-solvent reaction ...
When comparing a polar and nonpolar molecule with similar molar masses, the polar molecule in general has a higher boiling point, because the dipole–dipole interaction between polar molecules results in stronger intermolecular attractions. One common form of polar interaction is the hydrogen bond, which is also
An oil is any nonpolar chemical substance that is composed primarily of hydrocarbons and is hydrophobic (does not mix with water) and lipophilic (mixes with other oils). Oils are usually flammable and surface active.
K ow, being a type of partition coefficient, serves as a measure of the relationship between lipophilicity (fat solubility) and hydrophilicity (water solubility) of a substance. The value is greater than one if a substance is more soluble in fat-like solvents such as n-octanol, and less than one if it is more soluble in water. [citation needed]
Micelles are spheres with a hydrophobic core formed by the non-polar tail of wetting solution molecules and are surrounded by a hydrophilic layer arising from the molecules’ polar heads. [4] Extra wetting solution molecules will be forced to form micelles instead of adhering to the surface, hence the surface tension remains constant.
For non-Newtonian fluid's viscosity, there are pseudoplastic, plastic, and dilatant flows that are time-independent, and there are thixotropic and rheopectic flows that are time-dependent. Three well-known time-dependent non-newtonian fluids which can be identified by the defining authors are the Oldroyd-B model [ 2 ] , Walters’ Liquid B [ 3 ...