Search results
Results from the WOW.Com Content Network
Within eukaryotes, DNA replication is controlled within the context of the cell cycle. As the cell grows and divides, it progresses through stages in the cell cycle; DNA replication takes place during the S phase (synthesis phase). The progress of the eukaryotic cell through the cycle is controlled by cell cycle checkpoints.
In bacterial DNA replication, regulation focuses on the binding of the DnaA initiator protein to the DNA, with initiation of replication occurring multiple times during one cell cycle. [93] Both prokaryotic and eukaryotic DNA use ATP binding and hydrolysis to direct helicase loading and in both cases the helicase is loaded in the inactive form.
It participates in transcription, the cell cycle, and DNA repair. According to recent research, missense mutations in the RECQ1 gene may play a role in the development of familial breast cancer. DNA helicases are frequently attracted to regions of DNA damage and are essential for cellular DNA replication, recombination, repair, and transcription.
Before DNA replication can start, the pre-replicative complex assembles at origins to load helicase onto DNA. The complex assembles in late mitosis and early G1. Assembly of these pre-replicative complexes (pre-RCs) is regulated in a manner that coordinates DNA replication with the cell cycle. [6]
The minichromosome maintenance protein complex (MCM) is a DNA helicase essential for genomic DNA replication. Eukaryotic MCM consists of six gene products, Mcm2–7, which form a heterohexamer. [1] [2] As a critical protein for cell division, MCM is also the target of various checkpoint pathways, such as the S-phase entry and S-phase arrest ...
DNA re-replication (or simply rereplication) is an undesirable and possibly fatal occurrence in eukaryotic cells in which the genome is replicated more than once per cell cycle. [1] Rereplication is believed to lead to genomic instability and has been implicated in the pathologies of a variety of human cancers . [ 2 ]
Origins of replication represent start sites for DNA replication and so their "firing" must be regulated to maintain the correct karyotype of the cell in question. The origins are required to fire only once per cell cycle, an observation that led to the postulated existence of licensing factors by biologists in the first place.
A DNA unwinding element (DUE or DNAUE) is the initiation site for the opening of the double helix structure of the DNA at the origin of replication for DNA synthesis. [1] It is A-T rich and denatures easily due to its low helical stability, [ 2 ] which allows the single-strand region to be recognized by origin recognition complex .