Search results
Results from the WOW.Com Content Network
For algorithms describing how to calculate the remainder, see division algorithm.) The remainder, as defined above, is called the least positive remainder or simply the remainder. [2] The integer a is either a multiple of d, or lies in the interval between consecutive multiples of d, namely, q⋅d and (q + 1)d (for positive q).
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
There are four binary digits, so the loop executes four times, with values a 0 = 1, a 1 = 0, a 2 = 1, and a 3 = 1. First, initialize the result R {\displaystyle R} to 1 and preserve the value of b in the variable x :
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
This 4 is then placed under and subtracted from the 5 to get the remainder, 1, which is placed under the 4 under the 5. Afterwards, the first as-yet unused digit in the dividend, in this case the first digit 0 after the 5, is copied directly underneath itself and next to the remainder 1, to form the number 10.
One must multiply the leftmost digit of the original number by 3, add the next digit, take the remainder when divided by 7, and continue from the beginning: multiply by 3, add the next digit, etc. For example, the number 371: 3×3 + 7 = 16 remainder 2, and 2×3 + 1 = 7. This method can be used to find the remainder of division by 7.
In the next step, b(x) is divided by r 0 (x) yielding a remainder r 1 (x) = x 2 + x + 2. Finally, dividing r 0 (x) by r 1 (x) yields a zero remainder, indicating that r 1 (x) is the greatest common divisor polynomial of a(x) and b(x), consistent with their factorization. Many of the applications described above for integers carry over to ...
In the above theorem, each of the four integers has a name of its own: a is called the dividend, b is called the divisor, q is called the quotient and r is called the remainder. The computation of the quotient and the remainder from the dividend and the divisor is called division, or in case of ambiguity, Euclidean division.