Search results
Results from the WOW.Com Content Network
The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time. The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model .
The memorylessness property asserts that the number of previously failed trials has no effect on the number of future trials needed for a success. Geometric random variables can also be defined as taking values in N 0 {\displaystyle \mathbb {N} _{0}} , which describes the number of failed trials before the first success in a sequence of ...
Suppose that one starts with $10, and one wagers $1 on an unending, fair, coin toss indefinitely, or until all of the money is lost. If represents the number of dollars one has after n tosses, with =, then the sequence {:} is a Markov process. If one knows that one has $12 now, then it would be expected that with even odds, one will either have ...
The survival function is one of several ways to describe and display survival data. Another useful way to display data is a graph showing the distribution of survival times of subjects. Olkin, [5] page 426, gives the following example of survival data. The number of hours between successive failures of an air-conditioning (AC) system were recorded.
A memoryless source is one in which each message is an independent identically distributed random variable, whereas the properties of ergodicity and stationarity impose less restrictive constraints. All such sources are stochastic. These terms are well studied in their own right outside information theory.
(This formula is sometimes called the Hartley function.) This is the maximum possible rate of information that can be transmitted with that alphabet. (The logarithm should be taken to a base appropriate for the unit of measurement in use.) The absolute rate is equal to the actual rate if the source is memoryless and has a uniform distribution.
A visual depiction of a Poisson point process starting. In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...
Nevertheless, one can still say that some classes of infinite sequences of coin flips are far more likely than others, this is given by the asymptotic equipartition property. To conclude the formal definition, a Bernoulli process is then given by the probability triple ( Ω , B , P ) {\displaystyle (\Omega ,{\mathcal {B}},P)} , as defined above.