Search results
Results from the WOW.Com Content Network
The recurrent evolution of flight is a classic example, as flying insects, birds, pterosaurs, and bats have independently evolved the useful capacity of flight. Functionally similar features that have arisen through convergent evolution are analogous , whereas homologous structures or traits have a common origin but can have dissimilar functions.
Convergent evolution—the repeated evolution of similar traits in multiple lineages which all ancestrally lack the trait—is rife in nature, as illustrated by the examples below. The ultimate cause of convergence is usually a similar evolutionary biome , as similar environments will select for similar traits in any species occupying the same ...
Homologous sequences are paralogous if they were created by a duplication event within the genome. For gene duplication events, if a gene in an organism is duplicated, the two copies are paralogous. They can shape the structure of whole genomes and thus explain genome evolution to a large extent. Examples include the Homeobox genes in animals.
Analogous structures - structures similar in different organisms because, in convergent evolution, they evolved in a similar environment, rather than were inherited from a recent common ancestor. They usually serve the same or similar purposes. An example is the streamlined torpedo body shape of porpoises and sharks. So even though they evolved ...
The example above is an example alloparalogy. Symparalogs are paralogs that evolved from gene duplication of paralogous genes in subsequent speciation events. From the example above, if the descendant with genes A1 and B underwent another speciation event where gene A1 duplicated, the new species would have genes B, A1a, and A1b.
It differs from divergent evolution as the species involved do not descend from a closely related common ancestor and the traits accumulated are similar. [4] An example of convergent evolution is the development of flight in birds, bats, and insects, all of which are not closely related but share analogous structures allowing for flight. [8]
When two species share a trait, evolution is defined as parallel if the ancestors are known to have shared that similarity; if not, it is defined as convergent. However, the stated conditions are a matter of degree; all organisms share common ancestors. Scientists differ on whether the distinction is useful. [3] [4]
Common descent is a concept in evolutionary biology applicable when one species is the ancestor of two or more species later in time. According to modern evolutionary biology, all living beings could be descendants of a unique ancestor commonly referred to as the last universal common ancestor (LUCA) of all life on Earth.