Search results
Results from the WOW.Com Content Network
In linear algebra (and its application to quantum mechanics), a raising or lowering operator (collectively known as ladder operators) is an operator that increases or decreases the eigenvalue of another operator. In quantum mechanics, the raising operator is sometimes called the creation operator, and the lowering operator the annihilation ...
The mathematics for the creation and annihilation operators for bosons is the same as for the ladder operators of the quantum harmonic oscillator. [4] For example, the commutator of the creation and annihilation operators that are associated with the same boson state equals one, while all other commutators vanish.
Another type of operator in quantum field theory, discovered in the early 1970s, is known as the anti-symmetric operator.This operator, similar to spin in non-relativistic quantum mechanics is a ladder operator that can create two fermions of opposite spin out of a boson or a boson from two fermions.
For this reason, a is called an annihilation operator ("lowering operator"), and a † a creation operator ("raising operator"). The two operators together are called ladder operators . Given any energy eigenstate, we can act on it with the lowering operator, a , to produce another eigenstate with ħω less energy.
That is, the resulting spin operators for higher spin systems in three spatial dimensions, for arbitrarily large j, can be calculated using this spin operator and ladder operators. They can be found in Rotation group SO(3) § A note on Lie algebras. The analog formula to the above generalization of Euler's formula for Pauli matrices, the group ...
The mathematical formulation of quantum mechanics (QM) is built upon the concept of an operator. Physical pure states in quantum mechanics are represented as unit-norm vectors (probabilities are normalized to one) in a special complex Hilbert space. Time evolution in this vector space is given by the application of the evolution operator.
In quantum mechanics, the quantum analog G is now a Hermitian matrix, and the equations of motion are given by commutators, = [,]. The infinitesimal canonical motions can be formally integrated, just as the Heisenberg equation of motion were integrated, A ′ = U † A U {\displaystyle A'=U^{\dagger }AU} where U = e iGs and s is an arbitrary ...
In quantum mechanics, a complete set of commuting observables (CSCO) is a set of commuting operators whose common eigenvectors can be used as a basis to express any quantum state. In the case of operators with discrete spectra, a CSCO is a set of commuting observables whose simultaneous eigenspaces span the Hilbert space and are linearly ...