Search results
Results from the WOW.Com Content Network
Density system unit unit-code symbol or abbrev. notes sample default conversion combination output units Metric: kilogram per cubic metre: kg/m3 kg/m 3: 1.0 kg/m 3 (1.7 lb/cu yd)
More than 7 billion tons of coal are mined per year (2010), using approximately 200 litres of water per ton. [3] However, the amount of water required hinges on the surface characteristics of the coal being used. Most coal slurries require the addition of a surfactant to reduce the viscosity, ergo reduce the stress on pipelines and pumps. [4]
The kilogram per cubic metre (symbol: kg·m −3, or kg/m 3) is the unit of density in the International System of Units (SI). It is defined by dividing the SI unit of mass, the kilogram, by the SI unit of volume, the cubic metre. [1]
Its bank density (the density of a coal seam prior to breaking up during mining) is about 1346 kg/m 3 (84 lb/ft 3) while the bulk density of extracted coal is up to 833 kg/m 3 (52 lb/ft 3). [12] Bituminous coal characteristically burns with a smoky flame and softens and swells during combustion. [13]
Relative density or specific gravity of the coal depends on the rank of the coal and degree of mineral impurity. Knowledge of the density of each coal play is necessary to determine the properties of composites and blends. The density of the coal seam is necessary for conversion of resources into reserves.
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000