Search results
Results from the WOW.Com Content Network
In practice, the Murnaghan equation is used to perform a regression on a data set, where one gets the values of the coefficients K 0 and K ' 0. These coefficients obtained, and knowing the value of the volume to ambient conditions, then we are in principle able to calculate the volume, density and bulk modulus for any pressure.
The Birch–Murnaghan isothermal equation of state, published in 1947 by Albert Francis Birch of Harvard, [1] is a relationship between the volume of a body and the pressure to which it is subjected. Birch proposed this equation based on the work of Francis Dominic Murnaghan of Johns Hopkins University published in 1944, [ 2 ] so that the ...
The curve can also be shown in non-dimensional or standardized form by scaling elevation and area by the maximum values. The non-dimensional hypsometric curve provides a hydrologist or a geomorphologist with a way to assess the similarity of watersheds — and is one of several characteristics used for doing so. The hypsometric integral is a ...
Planck curves are also shown for a range of Earth temperatures. The emissivity of a planet or other astronomical body is determined by the composition and structure of its outer skin. In this context, the "skin" of a planet generally includes both its semi-transparent atmosphere and its non-gaseous surface.
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown.. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them.
In physics, the thermal equation of state is a mathematical expression of pressure P, temperature T, and, volume V.The thermal equation of state for ideal gases is the ideal gas law, expressed as PV=nRT (where R is the gas constant and n the amount of substance), while the thermal equation of state for solids is expressed as:
Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).
To calculate the density of air as a function of altitude, one requires additional parameters. For the troposphere, the lowest part (~10 km) of the atmosphere, they are listed below, along with their values according to the International Standard Atmosphere , using for calculation the universal gas constant instead of the air specific constant: