Search results
Results from the WOW.Com Content Network
Whether flow is laminar or turbulent is complicated, however generally flow within a pipe will be laminar as long as the Reynolds number is less than 2300. [2] = where: is the Reynolds number; is the diameter of the pipe.
As the Reynolds number increases, the continuous turbulent-flow moves closer to the inlet and the intermittency in between increases, until the flow becomes fully turbulent at Re D > 2900. [13] This result is generalized to non-circular channels using the hydraulic diameter , allowing a transition Reynolds number to be calculated for other ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The Reynolds-averaged Navier–Stokes equations (RANS equations) are time-averaged [a] equations of motion for fluid flow. The idea behind the equations is Reynolds decomposition, whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating quantities, an idea first proposed by Osborne Reynolds. [1] The RANS equations ...
From the equation it is shown that for a flow with a large Reynolds Number there will be a correspondingly small convective boundary layer compared to the vessel’s characteristic length. [5] By knowing the Reynolds and Womersley numbers for a given flow it is possible to calculate both the transient and the convective boundary layer ...
Accurate prescription of TKE as initial conditions in CFD simulations are important to accurately predict flows, especially in high Reynolds-number simulations. A smooth duct example is given below. k = 3 2 ( U I ) 2 , {\displaystyle k={\frac {3}{2}}(UI)^{2},} where I is the initial turbulence intensity [%] given below, and U is the initial ...
The Navier–Stokes equations govern the velocity and pressure of a fluid flow. In a turbulent flow, each of these quantities may be decomposed into a mean part and a fluctuating part. Averaging the equations gives the Reynolds-averaged Navier–Stokes (RANS) equations, which govern the mean flow.
A key tool used to determine the stability of a flow is the Reynolds number (Re), first put forward by George Gabriel Stokes at the start of the 1850s. Associated with Osborne Reynolds who further developed the idea in the early 1880s, this dimensionless number gives the ratio of inertial terms and viscous terms. [4]