Search results
Results from the WOW.Com Content Network
An achiral molecule having chiral conformations could theoretically form a mixture of right-handed and left-handed crystals, as often happens with racemic mixtures of chiral molecules (see Chiral resolution#Spontaneous resolution and related specialized techniques), or as when achiral liquid silicon dioxide is cooled to the point of becoming ...
An object that is not chiral is said to be achiral. A chiral object and its mirror image are said to be enantiomorphs. The word chirality is derived from the Greek χείρ (cheir), the hand, the most familiar chiral object; the word enantiomorph stems from the Greek ἐναντίος (enantios) 'opposite' + μορφή (morphe) 'form'.
Instead, both effects can also occur when the propagation direction of the electromagnetic wave together with the structure of an (achiral) material form a chiral experimental arrangement. [10] [11] This case, where the mutual arrangement of achiral components forms a chiral (experimental) arrangement, is known as extrinsic chirality. [12] [13]
Any planar pattern that does not have a line of mirror symmetry is 2d-chiral, and examples include flat spirals and letters such as S, G, P. In contrast to 3d-chiral objects, the perceived sense of twist of 2d-chiral patterns is reversed for opposite directions of observation.
One example is the chiral amino acid alanine, which has two optical isomers, and they are labeled according to which isomer of glyceraldehyde they come from. On the other hand, glycine , the amino acid derived from glyceraldehyde, has no optical activity, as it is not chiral (it's achiral).
A theory that is asymmetric with respect to chiralities is called a chiral theory, while a non-chiral (i.e., parity-symmetric) theory is sometimes called a vector theory. Many pieces of the Standard Model of physics are non-chiral, which is traceable to anomaly cancellation in chiral theories.
An achiral environment does not differentiate the molecular twins whereas a chiral environment does distinguish the left-handed version from the right-handed version. Human body, a classic bio-environment, is inherently handed as it is filled with chiral discriminators like amino acids, enzymes, carbohydrates, lipids, nucleic acids, etc.
The simplest chiral knot is the trefoil knot, which was shown to be chiral by Max Dehn. All nontrivial torus knots are chiral. The Alexander polynomial cannot distinguish a knot from its mirror image, but the Jones polynomial can in some cases; if V k ( q ) ≠ V k ( q −1 ), then the knot is chiral, however the converse is not true.