Search results
Results from the WOW.Com Content Network
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]
The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...
Subset sum problem [3]: SP13 Variations on the Traveling salesman problem. The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric.
The subset sum problem is a special case of the decision and 0-1 problems where each kind of item, the weight equals the value: =. In the field of cryptography, the term knapsack problem is often used to refer specifically to the subset sum problem. The subset sum problem is one of Karp's 21 NP-complete problems. [2]
The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem . The input to the problem is a multiset S {\displaystyle S} of n integers and a positive integer m representing the number of subsets.
The algorithm performs summation with two accumulators: sum holds the sum, and c accumulates the parts not assimilated into sum, to nudge the low-order part of sum the next time around. Thus the summation proceeds with "guard digits" in c , which is better than not having any, but is not as good as performing the calculations with double the ...
In number theory, Waring's problem asks whether each natural number k has an associated positive integer s such that every natural number is the sum of at most s natural numbers raised to the power k. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers.
The case = of this problem was used by Bjorn Poonen as the opening example in a survey on undecidable problems in number theory, of which Hilbert's tenth problem is the most famous example. [57] Although this particular case has since been resolved, it is unknown whether representing numbers as sums of cubes is decidable.