Search results
Results from the WOW.Com Content Network
Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. [1] An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus.
The tendency of an atom in a molecule to attract the shared pair of electrons towards itself is known as electronegativity. It is a dimensionless quantity because it is only a tendency. [17] The most commonly used scale to measure electronegativity was designed by Linus Pauling. The scale has been named the Pauling scale in his honour.
Electronegativity is not a uniquely defined property and may depend on the definition. The suggested values are all taken from WebElements as a consistent set. Many of the highly radioactive elements have values that must be predictions or extrapolations, but are unfortunately not marked as such.
A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons as in covalent bonds , or some combination of these effects.
Bent's rule can be extended to rationalize the hybridization of nonbonding orbitals as well. On the one hand, a lone pair (an occupied nonbonding orbital) can be thought of as the limiting case of an electropositive substituent, with electron density completely polarized towards the central atom.
A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8, meaning each oxygen atom has 8 protons in its nucleus.
A list of the electron affinities was used by Robert S. Mulliken to develop an electronegativity scale for atoms, equal to the average of the electrons affinity and ionization potential. [2] [3] Other theoretical concepts that use electron affinity include electronic chemical potential and chemical hardness.
the relationship of atomic charges to chemical reactivity and reaction mechanisms for similar compounds reported in the literature. The discussion of individual compounds in prior work has shown convergence in atomic charges, i.e., a high level of consistency between the assigned degree of polarity and the physical-chemical properties mentioned ...