Search results
Results from the WOW.Com Content Network
If clockwise bending moments are taken as negative, then a negative bending moment within an element will cause "hogging", and a positive moment will cause "sagging". It is therefore clear that a point of zero bending moment within a beam is a point of contraflexure—that is, the point of transition from hogging to sagging or vice versa.
In applied mechanics, bending (also known as flexure) characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element. The structural element is assumed to be such that at least one of its dimensions is a small fraction, typically 1/10 or less, of the other ...
Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.
The cross-section of the elements are similar to the previously described types: one-dimensional for thin plates and shells, and two-dimensional for solids, thick plates and shells. Three-dimensional elements for modeling 3-D solids such as machine components, dams, embankments or soil masses. Common element shapes include tetrahedrals and ...
Stress resultants are defined as integrals of stress over the thickness of a structural element. The integrals are weighted by integer powers the thickness coordinate z (or x 3). Stress resultants are so defined to represent the effect of stress as a membrane force N (zero power in z), bending moment M (power 1) on a beam or shell (structure).
Loads imposed on structures are supported by means of forces transmitted through structural elements. These forces can manifest themselves as tension (axial force), compression (axial force), shear, and bending, or flexure (a bending moment is a force multiplied by a distance, or lever arm, hence producing a turning effect or torque).
A beam is a structural element that primarily resists loads applied laterally across the beam's axis (an element designed to carry a load pushing parallel to its axis would be a strut or column). Its mode of deflection is primarily by bending , as loads produce reaction forces at the beam's support points and internal bending moments , shear ...
Orientations of the line perpendicular to the mid-plane of a thick paperback book under bending. The Timoshenko–Ehrenfest beam theory was developed by Stephen Timoshenko and Paul Ehrenfest [ 1 ] [ 2 ] [ 3 ] early in the 20th century.