enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  3. Event (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Event_(probability_theory)

    In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]

  4. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive events (events with no common results, such as the events {1,6}, {3}, and {2,4}), the probability that at least one of the events will occur is given by the sum of the probabilities of all the individual events. [28]

  5. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    [14] [15] These further studies have given rise to two prominent forms of the LLN. One is called the "weak" law and the other the "strong" law, in reference to two different modes of convergence of the cumulative sample means to the expected value; in particular, as explained below, the strong form implies the weak. [14]

  6. Complementary event - Wikipedia

    en.wikipedia.org/wiki/Complementary_event

    This does not, however, mean that any two events whose probabilities total to 1 are each other's complements; complementary events must also fulfill the condition of mutual exclusivity. The complement of any event A. Event A and its complement fill the entire sample space.

  7. AOL latest headlines, entertainment, sports, articles for business, health and world news.

  8. Randomness - Wikipedia

    en.wikipedia.org/wiki/Randomness

    Individual random events are, by definition, unpredictable, but if there is a known probability distribution, the frequency of different outcomes over repeated events (or "trials") is predictable. [note 1] For example, when throwing two dice, the outcome of any particular roll is unpredictable, but a sum of 7 will tend to occur twice as often ...

  9. Berry–Esseen theorem - Wikipedia

    en.wikipedia.org/wiki/Berry–Esseen_theorem

    That is: given a sequence of independent and identically distributed random variables, each having mean zero and positive variance, if additionally the third absolute moment is finite, then the cumulative distribution functions of the standardized sample mean and the standard normal distribution differ (vertically, on a graph) by no more than ...