enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Non-linear least squares - Wikipedia

    en.wikipedia.org/wiki/Non-linear_least_squares

    Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations.

  3. Nonlinear regression - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_regression

    See Michaelis–Menten kinetics for details . In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables.

  4. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Mathematically, linear least squares is the problem of approximately solving an overdetermined system of linear equations A x = b, where b is not an element of the column space of the matrix A. The approximate solution is realized as an exact solution to A x = b' , where b' is the projection of b onto the column space of A .

  5. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Linear regression can be used to estimate the values of β 1 and β 2 from the measured data. This model is non-linear in the time variable, but it is linear in the parameters β 1 and β 2; if we take regressors x i = (x i1, x i2) = (t i, t i 2), the model takes on the standard form

  6. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    The disturbance in matrix A is homoscedastic; this is the simple case where OLS is the best linear unbiased estimator. The disturbances in matrices B and C are heteroscedastic. In matrix B, the variance is time-varying, increasing steadily across time; in matrix C, the variance depends on the value of . The disturbance in matrix D is ...

  7. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    Here x ≥ 0 means that each component of the vector x should be non-negative, and ‖·‖ 2 denotes the Euclidean norm. Non-negative least squares problems turn up as subproblems in matrix decomposition, e.g. in algorithms for PARAFAC [2] and non-negative matrix/tensor factorization. [3] [4] The latter can be considered a generalization of ...

  8. Multidimensional scaling - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_scaling

    It is a form of non-linear dimensionality reduction. Given a distance matrix with the distances between each pair of objects in a set, and a chosen number of dimensions, N , an MDS algorithm places each object into N - dimensional space (a lower-dimensional representation) such that the between-object distances are preserved as well as possible.

  9. Phase plane - Wikipedia

    en.wikipedia.org/wiki/Phase_plane

    In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say (x, y), or (q, p) etc. (any pair of variables).