enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discharge coefficient - Wikipedia

    en.wikipedia.org/wiki/Discharge_coefficient

    In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.

  3. Orifice plate - Wikipedia

    en.wikipedia.org/wiki/Orifice_plate

    Orifice plate showing vena contracta. An orifice plate is a thin plate with a hole in it, which is usually placed in a pipe. When a fluid (whether liquid or gaseous) passes through the orifice, its pressure builds up slightly upstream of the orifice [1] but as the fluid is forced to converge to pass through the hole, the velocity increases and the fluid pressure decreases.

  4. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    The size of the largest scales of fluid motion (sometimes called eddies) are set by the overall geometry of the flow. For instance, in an industrial smoke stack, the largest scales of fluid motion are as big as the diameter of the stack itself. The size of the smallest scales is set by the Reynolds number.

  5. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  6. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    is the frictional coefficient, is the axial coordinate in the manifold, ∆X = L/n. The n is the number of ports and L the length of the manifold (Fig. 2). This is fundamental of manifold and network models. Thus, a T-junction (Fig. 3) can be represented by two Bernoulli equations according to two flow outlets.

  7. Flow conditioning - Wikipedia

    en.wikipedia.org/wiki/Flow_conditioning

    Now to use the eq.(4), the flow field entering the orifice plate must be free of swirl and exhibit a fully developed flow profile. API 14.3 (1990) and ISO standards determined the Coefficient of Discharge by completing numerous calibration tests where the indicated mass flow was compared to the actual mass flow to determine coefficient of ...

  8. Talk:Orifice plate - Wikipedia

    en.wikipedia.org/wiki/Talk:Orifice_plate

    The article says the discharge coefficient Cd should be modified by the "velocity approach factor sqrt(1-beta^4), producing the "flow coefficient" C. The reference for this (1)no longer leads anywhere, and should be removed. Someone's lecture notes may be a dubious reference anyway!

  9. Flow measurement - Wikipedia

    en.wikipedia.org/wiki/Flow_measurement

    The coefficient of discharge of Venturi meter ranges from 0.93 to 0.97. The first large-scale Venturi meters to measure liquid flows were developed by Clemens Herschel, who used them to measure small and large flows of water and wastewater beginning at the very end of the 19th century. [6]