Search results
Results from the WOW.Com Content Network
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
The first stage is the linear elastic region. The stress is proportional to the strain, that is, obeys the general Hooke's law, and the slope is Young's modulus. In this region, the material undergoes only elastic deformation. The end of the stage is the initiation point of plastic deformation.
Young diagram of shape (5, 4, 1), English notation Young diagram of shape (5, 4, 1), French notation. A Young diagram (also called a Ferrers diagram, particularly when represented using dots) is a finite collection of boxes, or cells, arranged in left-justified rows, with the row lengths in non-increasing order.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength .
E is a material constant called Young's modulus or elastic modulus; ε is the resulting strain. This relationship only applies in the elastic range and indicates that the slope of the stress vs. strain curve can be used to find Young's modulus (E). Engineers often use this calculation in tensile tests.
E i is the Young's modulus along axis i; G ij is the shear modulus in direction j on the plane whose normal is in direction i; ν ij is the Poisson ratio that corresponds to a contraction in direction j when an extension is applied in direction i. The Poisson ratio of an orthotropic material is different in each direction (x, y and z). However ...
The modulus of elasticity can be used to determine the stress–strain relationship in the linear-elastic portion of the stress–strain curve. The linear-elastic region is either below the yield point, or if a yield point is not easily identified on the stress–strain plot it is defined to be between 0 and 0.2% strain, and is defined as the ...
Young's modulus of on the order of several GPa showed that CNTs are in fact very soft in the radial direction. A complete phase diagram giving the transition to the radially collapsed geometry as function of diameter, pressure and number of tube-walls has been produced from semiempirical grounds. [6]