enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electromagnetic absorption by water - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_absorption...

    The spectrum of ice is similar to that of liquid water, with peak maxima at 3400 cm −1 (2.941 μm), 3220 cm −1 (3.105 μm) and 1620 cm −1 (6.17 μm) [14] In both liquid water and ice clusters, low-frequency vibrations occur, which involve the stretching (TS) or bending (TB) of intermolecular hydrogen bonds (O–H•••O).

  3. Optical properties of water and ice - Wikipedia

    en.wikipedia.org/wiki/Optical_properties_of...

    The refractive index of water at 20 °C for visible light is 1.33. [1] The refractive index of normal ice is 1.31 (from List of refractive indices). In general, an index of refraction is a complex number with real and imaginary parts, where the latter indicates the strength of absorption loss at a particular wavelength. In the visible part of ...

  4. Photosynthetically active radiation - Wikipedia

    en.wikipedia.org/wiki/Photosynthetically_active...

    Photosynthetically active radiation (PAR) spans the visible light portion of the electromagnetic spectrum from 400 to 700 nanometers. Photosynthetically active radiation (PAR) designates the spectral range (wave band) of solar radiation from 400 to 700 nanometers that photosynthetic organisms are able to use in the process of photosynthesis.

  5. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    The 41.8% point is the wavelength-frequency-neutral peak (i.e. the peak in power per unit change in logarithm of wavelength or frequency). These are the points at which the respective Planck-law functions ⁠ 1 / λ 5 ⁠ , ν 3 and ⁠ ν 2 / λ 2 ⁠ , respectively, divided by exp ( ⁠ hν / k B T ⁠ ) − 1 attain their maxima.

  6. Wien's displacement law - Wikipedia

    en.wikipedia.org/wiki/Wien's_displacement_law

    Using Wien's law, one finds a peak emission per nanometer (of wavelength) at a wavelength of about 500 nm, in the green portion of the spectrum near the peak sensitivity of the human eye. [3] [4] On the other hand, in terms of power per unit optical frequency, the Sun's peak emission is at 343 THz or a wavelength of 883 nm in the near infrared ...

  7. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    Using longer wavelengths means less light energy is needed for the same number of photons and therefore for the same amount of photosynthesis. For actual sunlight, where only 45% of the light is in the photosynthetically active wavelength range, the theoretical maximum efficiency of solar energy conversion is approximately 11%.

  8. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    In PSII, it absorbs photons with a wavelength of 680 nm, and is therefore called P680. In PSI, it absorbs photons at 700 nm and is called P700. In bacteria, the special pair is called P760, P840, P870, or P960. "P" here means pigment, and the number following it is the wavelength of light absorbed.

  9. Photoelectrochemical process - Wikipedia

    en.wikipedia.org/wiki/Photoelectrochemical_process

    Photosensitization is a process of transferring the energy of absorbed light. After absorption, the energy is transferred to the (chosen) reactants. This is part of the work of photochemistry in general. In particular this process is commonly employed where reactions require light sources of certain wavelengths that are not readily available. [14]