Search results
Results from the WOW.Com Content Network
Aldosterone release causes sodium and water retention, which causes increased blood volume, and a subsequent increase in blood pressure, which is sensed by the baroreceptors. [39] To maintain normal homeostasis these receptors also detect low blood pressure or low blood volume, causing aldosterone to be released.
Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. [1]
The primary endogenous mineralocorticoid is aldosterone, although a number of other endogenous hormones (including progesterone [1] and deoxycorticosterone) have mineralocorticoid function. Aldosterone acts on the kidneys to provide active reabsorption of sodium and an associated passive reabsorption of water, as well as the active secretion of ...
This causes the release of aldosterone into the blood. Aldosterone acts primarily on the distal convoluted tubules and collecting ducts of the kidneys, stimulating the excretion of potassium ions into the urine. [64] It does so, however, by activating the basolateral Na + /K + pumps of the tubular epithelial cells. These sodium/potassium ...
The mineralocorticoid receptor (or MR, MLR, MCR), also known as the aldosterone receptor or nuclear receptor subfamily 3, group C, member 2, (NR3C2) is a protein that in humans is encoded by the NR3C2 gene that is located on chromosome 4q31.1-31.2. [5] MR is a receptor with equal affinity for mineralocorticoids and glucocorticoids.
Aldosterone synthase is a protein which is only expressed in the zona glomerulosa [5] of the adrenal cortex and is primarily regulated by the renin–angiotensin system. [6] It is the sole enzyme capable of synthesizing aldosterone in humans and plays an important role in electrolyte balance and blood pressure. [7]
Conversely, glycogenesis is enhanced and glycogenolysis inhibited when there are high levels of insulin in the blood. [15] The level of circulatory glucose (known informally as "blood sugar"), as well as the detection of nutrients in the Duodenum is the most important factor determining the amount of glucagon or insulin produced.
In plants, carotenoids can occur in roots, stems, leaves, flowers, and fruits. Carotenoids have two important functions in plants. First, they can contribute to photosynthesis. They do this by transferring some of the light energy they absorb to chlorophylls, which then uses this energy for photosynthesis. Second, they can protect plants which ...