enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Being an observable, its eigenfunctions represent the ...

  3. Momentum operator - Wikipedia

    en.wikipedia.org/wiki/Momentum_operator

    Momentum operator. In quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is: where ħ is the reduced Planck constant, i the imaginary ...

  4. Wigner D-matrix - Wikipedia

    en.wikipedia.org/wiki/Wigner_D-matrix

    The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU (2) and SO (3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors.

  5. Ladder operator - Wikipedia

    en.wikipedia.org/wiki/Ladder_operator

    The ladder operators of the quantum harmonic oscillator or the "number representation" of second quantization are just special cases of this fact. Ladder operators then become ubiquitous in quantum mechanics from the angular momentum operator, to coherent states and to discrete magnetic translation operators.

  6. Operator (physics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(physics)

    Let ψ be the wavefunction for a quantum system, and ^ be any linear operator for some observable A (such as position, momentum, energy, angular momentum etc.). If ψ is an eigenfunction of the operator A ^ {\displaystyle {\hat {A}}} , then

  7. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Eigenvalues and eigenvectors. In linear algebra, an eigenvector (/ ˈaɪɡən -/ EYE-gən-) or characteristic vector is a vector that has its direction unchanged by a given linear transformation. More precisely, an eigenvector, , of a linear transformation, , is scaled by a constant factor, , when the linear transformation is applied to it: .

  8. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved.

  9. Tensor operator - Wikipedia

    en.wikipedia.org/wiki/Tensor_operator

    Examples of vector operators are the momentum, the position, the orbital angular momentum, , and the spin angular momentum, . (Fine print: Angular momentum is a vector as far as rotations are concerned, but unlike position or momentum it does not change sign under space inversion, and when one wishes to provide this information, it is said to ...