enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Holm–Bonferroni method - Wikipedia

    en.wikipedia.org/wiki/Holm–Bonferroni_method

    A hypothesis is rejected at level α if and only if its adjusted p-value is less than α. In the earlier example using equal weights, the adjusted p -values are 0.03, 0.06, 0.06, and 0.02. This is another way to see that using α = 0.05, only hypotheses one and four are rejected by this procedure.

  3. Testing hypotheses suggested by the data - Wikipedia

    en.wikipedia.org/wiki/Testing_hypotheses...

    Testing a hypothesis suggested by the data can very easily result in false positives (type I errors). If one looks long enough and in enough different places, eventually data can be found to support any hypothesis. Yet, these positive data do not by themselves constitute evidence that the hypothesis is correct. The negative test data that were ...

  4. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    Statistical hypothesis testing is considered a mature area within statistics, [25] but a limited amount of development continues. An academic study states that the cookbook method of teaching introductory statistics leaves no time for history, philosophy or controversy. Hypothesis testing has been taught as received unified method.

  5. Bonferroni correction - Wikipedia

    en.wikipedia.org/wiki/Bonferroni_correction

    With respect to FWER control, the Bonferroni correction can be conservative if there are a large number of tests and/or the test statistics are positively correlated. [9] Multiple-testing corrections, including the Bonferroni procedure, increase the probability of Type II errors when null hypotheses are false, i.e., they reduce statistical power.

  6. Hotelling's T-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Hotelling's_T-squared...

    In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T 2), proposed by Harold Hotelling, [1] is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution.

  7. Estimation statistics - Wikipedia

    en.wikipedia.org/wiki/Estimation_statistics

    It complements hypothesis testing approaches such as null hypothesis significance testing (NHST), by going beyond the question is an effect present or not, and provides information about how large an effect is. [2] [3] Estimation statistics is sometimes referred to as the new statistics. [3] [4] [5]

  8. Binomial test - Wikipedia

    en.wikipedia.org/wiki/Binomial_test

    The binomial test is useful to test hypotheses about the probability of success: : = where is a user-defined value between 0 and 1.. If in a sample of size there are successes, while we expect , the formula of the binomial distribution gives the probability of finding this value:

  9. Uniformly most powerful test - Wikipedia

    en.wikipedia.org/wiki/Uniformly_most_powerful_test

    In statistical hypothesis testing, a uniformly most powerful (UMP) test is a hypothesis test which has the greatest power among all possible tests of a given size α. For example, according to the Neyman–Pearson lemma , the likelihood-ratio test is UMP for testing simple (point) hypotheses.