Search results
Results from the WOW.Com Content Network
Lantibiotics are a class of polycyclic peptide antibiotics that contain the characteristic thioether amino acids lanthionine or methyllanthionine, as well as the unsaturated amino acids dehydroalanine, and 2-aminoisobutyric acid. They belong to ribosomally synthesized and post-translationally modified peptides.
Production of antibiotics is a naturally occurring event, that thanks to advances in science can now be replicated and improved upon in laboratory settings. Due to the discovery of penicillin by Alexander Fleming, and the efforts of Florey and Chain in 1938, large-scale, pharmaceutical production of antibiotics has been made possible.
Nitrobenzene is prepared by nitration of benzene with a mixture of concentrated sulfuric acid, water, and nitric acid. This mixture is sometimes called "mixed acid." The production of nitrobenzene is one of the most dangerous processes conducted in the chemical industry because of the exothermicity of the reaction (ΔH = −117 kJ/mol). [5] +
Some antibiotics may also damage the mitochondrion, a bacteria-derived organelle found in eukaryotic, including human, cells. [52] Mitochondrial damage cause oxidative stress in cells and has been suggested as a mechanism for side effects from fluoroquinolones. [53] They are also known to affect chloroplasts. [54]
The complexity and diversity of resistance mechanisms has defined the need for new and improved β-lactam antibiotics. [29] With their broad spectrum the cephalosporins have come to dominate β-lactam chemotherapy although they often lack oral bioavailability.
The production of a β-lactamase by a bacterium does not necessarily rule out all treatment options with β-lactam antibiotics. In some instances, β-lactam antibiotics may be co-administered with a β-lactamase inhibitor. For example, Augmentin (FGP) is made of amoxicillin (a β-lactam antibiotic) and clavulanic acid (a β-lactamase inhibitor).
The reaction was first used by Antoine Béchamp to reduce nitronaphthalene and nitrobenzene to naphthylamine and aniline, respectively. [3] The Béchamp reduction is broadly applicable to aromatic nitro compounds. [4] [5] Aliphatic nitro compounds are however more difficult to reduce, often remaining as the hydroxylamine. Tertiary aliphatic ...
PCNB is prepared by chlorination of nitrobenzene at 60–70 °C in chlorosulfuric acid, with iodine as a catalyst. It can also be produced by the nitration of chlorinated benzenes. A side product of the synthesis of PCNB is hexachlorobenzene (HCB), which is considered as hazardous as PCNB. [1] 5 Cl 2 + C 6 H 5 NO 2 → C 6 Cl 5 NO 2 + 5 HCl