enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    More specifically, let A, B, C and D be four points on a circle such that the lines AC and BD are perpendicular. Denote the intersection of AC and BD by M. Drop the perpendicular from M to the line BC, calling the intersection E. Let F be the intersection of the line EM and the edge AD. Then, the theorem states that F is the midpoint AD.

  3. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.

  4. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    Two angles are congruent if they have the same measure. Two circles are congruent if they have the same diameter. In this sense, the sentence "two plane figures are congruent" implies that their corresponding characteristics are congruent (or equal) including not just their corresponding sides and angles, but also their corresponding diagonals ...

  5. Orthogonal circles - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_circles

    In geometry, two circles are said to be orthogonal if their respective tangent lines at the points of intersection are perpendicular (meet at a right angle). A straight line through a circle's center is orthogonal to it, and if straight lines are also considered as a kind of generalized circles , for instance in inversive geometry , then an ...

  6. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    An inversion in their tangent point with respect to a circle of appropriate radius transforms the two touching given circles into two parallel lines, and the third given circle into another circle. Thus, the solutions may be found by sliding a circle of constant radius between two parallel lines until it contacts the transformed third circle.

  7. Johnson circles - Wikipedia

    en.wikipedia.org/wiki/Johnson_circles

    In geometry, a set of Johnson circles comprises three circles of equal radius r sharing one common point of intersection H.In such a configuration the circles usually have a total of four intersections (points where at least two of them meet): the common point H that they all share, and for each of the three pairs of circles one more intersection point (referred here as their 2-wise intersection).

  8. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    The two bimedians of a quadrilateral (segments joining midpoints of opposite sides) and the line segment joining the midpoints of the diagonals are concurrent and are all bisected by their point of intersection. [3]: p.125 In a tangential quadrilateral, the four angle bisectors concur at the center of the incircle. [4]

  9. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    Two lines are parallel if and only if the two angles of any pair of corresponding angles of any transversal are congruent (equal in measure). Proposition 1.28 of Euclid's Elements , a theorem of absolute geometry (hence valid in both hyperbolic and Euclidean Geometry ), proves that if the angles of a pair of corresponding angles of a ...

  1. Related searches matlab find opposite diagonal of a circle with two congruent lines worksheet

    two triangles are congruentare two lines congruent or equal
    geometry congruence formulaexample of congruent geometry