enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cayley–Menger determinant - Wikipedia

    en.wikipedia.org/wiki/Cayley–Menger_determinant

    In linear algebra, geometry, and trigonometry, the Cayley–Menger determinant is a formula for the content, i.e. the higher-dimensional volume, of a -dimensional simplex in terms of the squares of all of the distances between pairs of its vertices. The determinant is named after Arthur Cayley and Karl Menger.

  3. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    The volume of a tetrahedron can be obtained in many ways. It can be given by using the formula of the pyramid's volume: =. where is the base' area and is the height from the base to the apex. This applies for each of the four choices of the base, so the distances from the apices to the opposite faces are inversely proportional to the areas of ...

  4. Distance geometry - Wikipedia

    en.wikipedia.org/wiki/Distance_geometry

    Tartaglia, from 16th century AD, generalized it to give the volume of tetrahedron from the distances between its 4 vertices. The modern theory of distance geometry began with Arthur Cayley and Karl Menger. [7] Cayley published the Cayley determinant in 1841, [8] which is a special case of

  5. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    The volume of an ideal tetrahedron can be expressed in terms of the Clausen function or Lobachevsky function of its dihedral angles, and the volume of an arbitrary ideal polyhedron can then be found by partitioning it into tetrahedra and summing the volumes of the tetrahedra. [11]

  6. Trirectangular tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Trirectangular_tetrahedron

    A trirectangular tetrahedron with its base shown in green and its apex as a solid black disk. It can be constructed by a coordinate octant and a plane crossing all 3 axes away from the origin (x>0; y>0; z>0) and x/a+y/b+z/c<1. In geometry, a trirectangular tetrahedron is a tetrahedron where all three face angles at one vertex are right angles.

  7. Dehn invariant - Wikipedia

    en.wikipedia.org/wiki/Dehn_invariant

    Defining the Dehn invariant in a way that can apply to all polyhedra simultaneously involves infinite-dimensional vector spaces (see § Full definition, below).However, when restricted to any particular example consisting of finitely many polyhedra, such as the Platonic solids, it can be defined in a simpler way, involving only a finite number of dimensions, as follows: [7]

  8. Reeve tetrahedra - Wikipedia

    en.wikipedia.org/wiki/Reeve_tetrahedra

    All vertices of a Reeve tetrahedron are lattice points (points whose coordinates are all integers). No other lattice points lie on the surface or in the interior of the tetrahedron. The volume of the Reeve tetrahedron with vertex (1, 1, r) is r/6. In 1957 Reeve used this tetrahedron to show that there exist tetrahedra with four lattice points ...

  9. Truncated tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_tetrahedron

    Given the edge length .The surface area of a truncated tetrahedron is the sum of 4 regular hexagons and 4 equilateral triangles' area, and its volume is: [2] =, =.. The dihedral angle of a truncated tetrahedron between triangle-to-hexagon is approximately 109.47°, and that between adjacent hexagonal faces is approximately 70.53°.