enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sequential quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Sequential_quadratic...

    Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization, also known as Lagrange-Newton method.SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable, but not necessarily convex.

  3. Sequential linear-quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Sequential_linear...

    In the EQP phase of SLQP, the search direction of the step is obtained by solving the following equality-constrained quadratic program: + + (,,).. + = + =Note that the term () in the objective functions above may be left out for the minimization problems, since it is constant.

  4. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    [6] Ye and Tse [7] present a polynomial-time algorithm, which extends Karmarkar's algorithm from linear programming to convex quadratic programming. On a system with n variables and L input bits, their algorithm requires O(L n) iterations, each of which can be done using O(L n 3) arithmetic operations, for a total runtime complexity of O(L 2 n 4).

  5. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    GEKKO works on all platforms and with Python 2.7 and 3+. By default, the problem is sent to a public server where the solution is computed and returned to Python. There are Windows, MacOS, Linux, and ARM (Raspberry Pi) processor options to solve without an Internet connection.

  6. Limited-memory BFGS - Wikipedia

    en.wikipedia.org/wiki/Limited-memory_BFGS

    An alternative approach is the compact representation, which involves a low-rank representation for the direct and/or inverse Hessian. [6] This represents the Hessian as a sum of a diagonal matrix and a low-rank update. Such a representation enables the use of L-BFGS in constrained settings, for example, as part of the SQP method.

  7. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    This method [6] runs a branch-and-bound algorithm on problems, where is the number of variables. Each such problem is the subproblem obtained by dropping a sequence of variables x 1 , … , x i {\displaystyle x_{1},\ldots ,x_{i}} from the original problem, along with the constraints containing them.

  8. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    This represents the value (or values) of the argument x in the interval (−∞,−1] that minimizes (or minimize) the objective function x 2 + 1 (the actual minimum value of that function is not what the problem asks for). In this case, the answer is x = −1, since x = 0 is infeasible, that is, it does not belong to the feasible set. Similarly,

  9. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    To see this, note that the two constraints x 1 (x 11) ≤ 0 and x 1 (x 11) ≥ 0 are equivalent to the constraint x 1 (x 11) = 0, which is in turn equivalent to the constraint x 1 ∈ {0, 1}. Hence, any 0–1 integer program (in which all variables have to be either 0 or 1) can be formulated as a quadratically constrained ...