Search results
Results from the WOW.Com Content Network
In C++, complex arithmetic can be performed using the complex number class, but the two methods are not code-compatible. (The standards since C++11 require binary compatibility, however.) [16] Variable length arrays. This feature leads to possibly non-compile time sizeof operator. [17]
The following containers are defined in the current revision of the C++ standard: array, vector, list, forward_list, deque. Each of these containers implements different algorithms for data storage, which means that they have different speed guarantees for different operations: [1] array implements a compile-time non-resizable array.
Example clusterings for a dataset with the kMeans (left) and Mean shift (right) algorithms. The calculated Adjusted Rand index for these two clusterings is . The Rand index [1] or Rand measure (named after William M. Rand) in statistics, and in particular in data clustering, is a measure of the similarity between two data clusterings.
For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine.
Multiple dispatch, meta, scalar and array-oriented, parallel, concurrent, distributed ("cloud") No K: Data processing, business No No No No No No Array-oriented, tacit Unknown Kotlin: Application, mobile development, server-side, client-side, web Yes Yes Yes Yes Yes Yes [31] De facto standard via Kotlin Language Specification Ksh: Shell ...
However, the above example unnecessarily allocates a temporary array for the result of sin(x). A more efficient implementation would allocate a single array for y, and compute y in a single loop. To optimize this, a C++ compiler would need to: Inline the sin and operator+ function calls. Fuse the loops into a single loop.
An associative container uses an associative array, map, or dictionary, composed of key-value pairs, such that each key appears at most once in the container. The key is used to find the value, the object, if it is stored in the container. Associative containers are used in programming languages as class templates.
The g++ compiler implements the multiple inheritance of the classes B1 and B2 in class D using two virtual method tables, one for each base class. (There are other ways to implement multiple inheritance, but this is the most common.) This leads to the necessity for "pointer fixups", also called thunks, when casting. Consider the following C++ code: