enow.com Web Search

  1. Ad

    related to: faces edges vertices worksheets

Search results

  1. Results from the WOW.Com Content Network
  2. List of uniform polyhedra by vertex figure - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra...

    The relations can be made apparent by examining the vertex figures obtained by listing the faces adjacent to each vertex (remember that for uniform polyhedra all vertices are the same, that is vertex-transitive). For example, the cube has vertex figure 4.4.4, which is to say, three adjacent square faces. The possible faces are 3 - equilateral ...

  3. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

  4. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  5. Regular skew polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_skew_polyhedron

    56 vertices, 168 edges Some of the 4-dimensional regular skew polyhedra fits inside the uniform polychora as shown in the top 4 projections. Coxeter also enumerated the a larger set of finite regular polyhedra in his paper "regular skew polyhedra in three and four dimensions, and their topological analogues".

  6. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces. For example, since a cube has 12 edges and 6 faces, the formula implies that it has eight vertices.

  7. Polyhedral combinatorics - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_combinatorics

    The dimension of a face is the dimension of this hull. The 0-dimensional faces are the vertices themselves, and the 1-dimensional faces (called edges) are line segments connecting pairs of vertices. Note that this definition also includes as faces the empty set and the whole polytope P.

  8. Small stellated dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Small_stellated_dodecahedron

    The dodecadodecahedron is a rectification, where edges are truncated down to points. The truncated small stellated dodecahedron can be considered a degenerate uniform polyhedron since edges and vertices coincide, but it is included for completeness. Visually, it looks like a regular dodecahedron on the surface, but it has 24 faces in ...

  9. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    In geometry, the Rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has a total of 62 faces: 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, with 60 vertices, and 120 edges.

  1. Ad

    related to: faces edges vertices worksheets