Search results
Results from the WOW.Com Content Network
Hypochlorous is a weak acid and an oxidizing agent. [3] This "acidic electrolyzed water" can be raised in pH by mixing in the desired amount of hydroxide ion solution from the cathode compartment, yielding a solution of Hypochlorous acid (HOCl) and sodium hydroxide (NaOH). A solution whose pH is 7.3 will contain equal concentrations of ...
In the chloralkali process (electrolysis of brine) a water/sodium chloride mixture is only half the electrolysis of water since the chloride ions are oxidized to chlorine rather than water being oxidized to oxygen. Thermodynamically, this would not be expected since the oxidation potential of the chloride ion is less than that of water, but the ...
Oxidizing acids, being strong oxidizing agents, can often oxidize certain less reactive metals, in which the active oxidizing agent is not H + ions. For example, copper is a rather unreactive metal, and has no reaction with concentrated hydrochloric acid .
The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).
Carbonic acid is an illustrative example of the Lewis acidity of an acidic oxide. CO 2 + 2OH − ⇌ HCO 3 − + OH − ⇌ CO 3 2− + H 2 O. This property is a key reason for keeping alkali chemicals well sealed from the atmosphere, as long-term exposure to carbon dioxide in the air can degrade the material.
Note that the rusting of iron is a reaction between iron and oxygen [95] that is dissolved in water, not between iron and water. Water can be oxidized to emit oxygen gas, but very few oxidants react with water even if their reduction potential is greater than the potential of O 2 /H 2 O. Almost all such reactions require a catalyst. [96]
Since hydrogen can be used as an alternative clean burning fuel, there has been a need to split water efficiently. However, there are known materials that can mediate the reduction step efficiently therefore much of the current research is aimed at the oxidation half reaction also known as the Oxygen Evolution Reaction (OER).
These reactive species can be applied in water and can oxidize virtually any compound present in the water matrix, often at a diffusion-controlled reaction speed. Consequently, ·OH reacts unselectively once formed and contaminants will be quickly and efficiently fragmented and converted into small inorganic molecules.