Search results
Results from the WOW.Com Content Network
The Faraday paradox or Faraday's paradox is any experiment in which Michael Faraday's law of electromagnetic induction appears to predict an incorrect result. The paradoxes fall into two classes: Faraday's law appears to predict that there will be zero electromotive force (EMF) but there is a non-zero EMF.
That means the paradox of different descriptions may be only semantic. A description that uses scalar and vector potentials φ and A instead of B and E avoids the semantical trap. A Lorentz-invariant four vector A α = (φ / c, A) replaces E and B [5] and provides a frame-independent description (albeit less visceral than the E– B ...
In his study on the subject, Carl Hering concluded in 1908 that the usual statement of Faraday's Law (at the turn of the century) was imperfect and that it required to be modified in order to become universal. [1] Since then, Hering's paradox has been used repeatedly in physics didactics to demonstrate the application of Faraday's Law of ...
In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.
Faraday's law of induction (or simply Faraday's law) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction , is the fundamental operating principle of transformers , inductors , and many types of electric ...
Faraday disc. The first homopolar generator was developed by Michael Faraday during his experiments in 1831. It is frequently called the Faraday disc or Faraday wheel in his honor. It was the beginning of modern dynamos — that is, electrical generators which operate using a magnetic field.
For Faraday's first law, M, F, v are constants; thus, the larger the value of Q, the larger m will be. For Faraday's second law, Q, F, v are constants; thus, the larger the value of (equivalent weight), the larger m will be. In the simple case of constant-current electrolysis, Q = It, leading to
Download as PDF; Printable version; In other projects ... Paradox of free choice: ... Faraday paradox: An apparent violation of Faraday's law of electromagnetic ...