Search results
Results from the WOW.Com Content Network
Dissimilatory nitrate reduction to ammonium is a two step process, reducing NO 3 − to NO 2 − then NO 2 − to NH 4 +, though the reaction may begin with NO 2 − directly. [1] Each step is mediated by a different enzyme, the first step of dissimilatory nitrate reduction to ammonium is usually mediated by a periplasmic nitrate reductase.
The first step is the partial nitrification (nitritation) of half of the ammonium to nitrite by ammonia oxidizing bacteria: 2 NH + 4 + 3 O 2 → 2 NO − 2 + 4 H + + 2 H 2 O. The remaining half of the ammonium and the newly formed nitrite are converted in the anammox process to diatomic nitrogen gas and ~15 % nitrate (not shown) by anammox ...
Direct reduction from nitrate to ammonium, a process known as dissimilatory nitrate reduction to ammonium or DNRA, [6] is also possible for organisms that have the nrf-gene. [ 7 ] [ 8 ] This is less common than denitrification in most ecosystems as a means of nitrate reduction.
The Kjeldahl method or Kjeldahl digestion (Danish pronunciation: [ˈkʰelˌtɛˀl]) in analytical chemistry is a method for the quantitative determination of a sample's organic nitrogen plus ammonia/ammonium (NH 3 /NH 4 +). Without modification, other forms of inorganic nitrogen, for instance nitrate, are not included in
The Calculator in non-LTSC editions of Windows 10 is a Universal Windows Platform app. In contrast, Windows 10 LTSC (which does not include universal Windows apps) includes the traditional calculator, but which is now named win32calc.exe. Both calculators provide the features of the traditional calculator included with Windows 7 and Windows 8.x ...
Comammox (COMplete AMMonia OXidation) is the name attributed to an organism that can convert ammonia into nitrite and then into nitrate through the process of nitrification. [1] Nitrification has traditionally been thought to be a two-step process, where ammonia-oxidizing bacteria and archaea oxidize ammonia to nitrite and then nitrite ...
When heated to 150–180 °C, it decomposes with autooxidation to plutonium (VI) with the formation of plutonyl nitrate (PuO 2 (NO 3) 2).Upon evaporation of concentrated nitric acid solutions of plutonium nitrate and alkali metal nitrates, double nitrates of the composition M 2 [Pu(NO 3) 6] are formed, where M = Cs +, Rb +, K +, Tl +, NH 4 +, analogous to ceric ammonium nitrate.
Fritz Haber, 1918. The Haber process, [1] also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. [2] [3] It converts atmospheric nitrogen (N 2) to ammonia (NH 3) by a reaction with hydrogen (H 2) using finely divided iron metal as a catalyst: