enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    Decision trees are commonly used in operations research and operations management. If, in practice, decisions have to be taken online with no recall under incomplete knowledge, a decision tree should be paralleled by a probability model as a best choice model or online selection model algorithm.

  3. Information gain (decision tree) - Wikipedia

    en.wikipedia.org/wiki/Information_gain_(decision...

    Entropy diagram [2] A simple decision tree. Now, it is clear that information gain is the measure of how much information a feature provides about a class. Let's visualize information gain in a decision tree as shown in the right: The node t is the parent node, and the sub-nodes t L and t R are child nodes.

  4. Information gain ratio - Wikipedia

    en.wikipedia.org/wiki/Information_gain_ratio

    In decision tree learning, information gain ratio is a ratio of information gain to the intrinsic information. It was proposed by Ross Quinlan, [1] to reduce a bias towards multi-valued attributes by taking the number and size of branches into account when choosing an attribute.

  5. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset. ID3 is the precursor to the C4.5 algorithm , and is typically used in the machine learning and natural language processing domains.

  6. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.

  7. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality and even for simple concepts. [35] [36] Consequently, practical decision-tree learning algorithms are based on heuristics such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms cannot ...

  8. Discover the latest breaking news in the U.S. and around the world — politics, weather, entertainment, lifestyle, finance, sports and much more.

  9. Decision tree model - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_model

    Decision Tree Model. In computational complexity theory, the decision tree model is the model of computation in which an algorithm can be considered to be a decision tree, i.e. a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.