Search results
Results from the WOW.Com Content Network
An SCR can be brought from blocking mode to conduction mode in two ways: Either by increasing the voltage between anode and cathode beyond the breakover voltage, or by applying a positive pulse at the gate. Once the SCR starts conducting, no more gate voltage is required to maintain it in the ON state.
Some operating conditions require switching in each half-wave and thus very fast operation. Examples are control sections with very fast behavior or a required current limitation with low element resistance in the cold state. In this operating mode, the controller changes the phase angle α of the thyristor ignition timing.
Like an SCR, when a voltage pulse is present on the gate terminal, the device turns on. The main difference between an SCR and a Triac is that both the positive and negative cycle can be turned on independently of each other, using a positive or negative gate pulse. Similar to an SCR, once the device is turned on, the device cannot be turned off.
CPU modes (also called processor modes, CPU states, CPU privilege levels and other names) are operating modes for the central processing unit of most computer architectures that place restrictions on the type and scope of operations that can be performed by instructions being executed by the CPU.
The SCR can be calculated for each point on an electrical grid. A point on a grid having a number of machines with an SCR above a number between 1 and 1.5 has less vulnerability to voltage instability. Hence, such a grid is known strong grid or power system. A power system (grid) having a lower SCR has more vulnerability to grid voltage ...
low SCR: in case of a short circuit, the current is proportional to SCR, therefore generators with low SCR require less protection and thus are cheaper; low SCR allows shorter air gap and lower excitation field, both decreasing the size (an cost) of the generator; with low SCR the amounts of iron and copper are reduced, lowering the cost; high SCR:
Fig. 2: Top and bottom views of an air-cooled 10kW-Vienna Rectifier (400kHz PWM). The Vienna Rectifier is useful wherever six-switch converters are used for achieving sinusoidal mains current and controlled output voltage, when no energy feedback from the load into the mains is available.
For example, the IBM 1401 was simulated on the later IBM/360 through use of microcode emulation. To monitor and execute the machine code instructions (but treated as an input stream) on the same hardware for test and debugging purposes, e.g. with memory protection (which protects against accidental or deliberate buffer overflow ).