enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical model of the Solar System - Wikipedia

    en.wikipedia.org/wiki/Numerical_model_of_the...

    A numerical model of the Solar System is a set of mathematical equations, which, when solved, give the approximate positions of the planets as a function of time. Attempts to create such a model established the more general field of celestial mechanics. The results of this simulation can be compared with past measurements to check for accuracy ...

  3. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to produce ephemeris data.

  4. Lambert's problem - Wikipedia

    en.wikipedia.org/wiki/Lambert's_problem

    In celestial mechanics, Lambert's problem is concerned with the determination of an orbit from two position vectors and the time of flight, posed in the 18th century by Johann Heinrich Lambert and formally solved with mathematical proof by Joseph-Louis Lagrange. It has important applications in the areas of rendezvous, targeting, guidance, and ...

  5. Sphere of influence (astrodynamics) - Wikipedia

    en.wikipedia.org/wiki/Sphere_of_influence_(astro...

    A sphere of influence (SOI) in astrodynamics and astronomy is the oblate spheroid-shaped region where a particular celestial body exerts the main gravitational influence on an orbiting object. This is usually used to describe the areas in the Solar System where planets dominate the orbits of surrounding objects such as moons , despite the ...

  6. Universal variable formulation - Wikipedia

    en.wikipedia.org/wiki/Universal_variable_formulation

    The equation is the same as the equation for the harmonic oscillator, a well-known equation in both physics and mathematics, however, the unknown constant vector is somewhat inconvenient. Taking the derivative again, we eliminate the constant vector P , {\displaystyle \ \mathbf {P} \ ,} at the price of getting a third-degree differential equation:

  7. Kepler problem - Wikipedia

    en.wikipedia.org/wiki/Kepler_problem

    In classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force that varies in strength as the inverse square of the distance between them. The force may be either attractive or repulsive.

  8. Gauss's method - Wikipedia

    en.wikipedia.org/wiki/Gauss's_method

    In orbital mechanics (a subfield of celestial mechanics), Gauss's method is used for preliminary orbit determination from at least three observations (more observations increases the accuracy of the determined orbit) of the orbiting body of interest at three different times.

  9. Poincaré and the Three-Body Problem - Wikipedia

    en.wikipedia.org/wiki/Poincaré_and_the_Three...

    Poincaré and the Three-Body Problem is a monograph in the history of mathematics on the work of Henri Poincaré on the three-body problem in celestial mechanics.It was written by June Barrow-Green, as a revision of her 1993 doctoral dissertation, and published in 1997 by the American Mathematical Society and London Mathematical Society as Volume 11 in their shared History of Mathematics ...

  1. Related searches celestial mechanics equations and formulas answers 6th level of knowledge

    celestial mechanics wikicelestial mechanics definition