Search results
Results from the WOW.Com Content Network
Derivation of equations that describe the time course of change for a system with zero-order input and first-order elimination are presented in the articles Exponential decay and Biological half-life, and in scientific literature. [1] [7] = C t is concentration after time t
Clearance is variable in zero-order kinetics because a constant amount of the drug is eliminated per unit time, but it is constant in first-order kinetics, because the amount of drug eliminated per unit time changes with the concentration of drug in the blood. [3] [4]
A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].
The elimination rate constant K or K e is a value used in pharmacokinetics to describe the rate at which a drug is removed from the human system. [1] It is often abbreviated K or K e. It is equivalent to the fraction of a substance that is removed per unit time measured at any particular instant and has units of T −1.
Elimination reaction of cyclohexanol to cyclohexene with sulfuric acid and heat [1] An elimination reaction is a type of organic reaction in which two substituents are removed from a molecule in either a one- or two-step mechanism. [2] The one-step mechanism is known as the E2 reaction, and the two-step mechanism is known as the E1 reaction ...
[1] [2] Thus, the rate equation is often shown as having first-order dependence on the substrate and zero-order dependence on the nucleophile. This relationship holds for situations where the amount of nucleophile is much greater than that of the intermediate. Instead, the rate equation may be more accurately described using steady-state kinetics.
Zero-order process (statistics), a sequence of random variables, each independent of the previous ones; Zero order process (chemistry), a chemical reaction in which the rate of change of concentration is independent of the concentrations; Zeroth-order approximation, an approximation of a function by a constant; Zeroth-order logic, a form of ...
The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called Gauss–Jordan elimination. A matrix is in column echelon form if its transpose is in row echelon form.