Search results
Results from the WOW.Com Content Network
A portion of the computer's hard drive is set aside for a paging file or a scratch partition, and the combination of physical RAM and the paging file form the system's total memory. (For example, if a computer has 2 GB (1024 3 B) of RAM and a 1 GB page file, the operating system has 3 GB total memory available to it.)
The operating system will place actively used data in RAM, which is much faster than hard disks. When the amount of RAM is not sufficient to run all the current programs, it can result in a situation where the computer spends more time moving data from RAM to disk and back than it does accomplishing tasks; this is known as thrashing.
Associated with speed, the more RAM there is in the system, the faster the computer can run, because it allows the RAM to run more information through to the computer's (CPU). Not only does adding more RAM to a computer help it run faster, it helps boots up a computer immensely faster compared to booting up a system with less RAM.
Static random-access memory (static RAM or SRAM) is a type of random-access memory (RAM) that uses latching circuitry (flip-flop) to store each bit. SRAM is volatile memory ; data is lost when power is removed.
The 128kB Atari 130XE (with DOS 2.5) and Commodore 128 natively support RAM drives, as does ProDOS for the Apple II. On systems with 128kB or more of RAM, ProDOS automatically creates a RAM drive named /RAM. IBM added a RAM drive named VDISK.SYS to PC DOS (version 3.0) in August 1984, which was the first DOS component to use extended memory.
ROM and RAM are essential components of a computer, each serving distinct roles. RAM, or Random Access Memory, is a temporary, volatile storage medium that loses data when the system powers down. In contrast, ROM, being non-volatile, preserves its data even after the computer is switched off. [2]
In computing, a memory module or RAM stick is a printed circuit board on which memory integrated circuits are mounted. [1] Memory modules permit easy installation and replacement in electronic systems, especially computers such as personal computers, workstations, and servers. The first memory modules were proprietary designs that were specific ...
Modules are instead designed to run at different clock frequencies: for example, a PC-1600 module is designed to run at 100 MHz, and a PC-2100 is designed to run at 133 MHz. A module's clock speed designates the data rate at which it is guaranteed to perform, hence it is guaranteed to run at lower ( underclocking ) and can possibly run at ...