Search results
Results from the WOW.Com Content Network
An elastic modulus (also known as modulus of elasticity (MOE)) is a quantity that describes an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it.
Deflection (f) in engineering. In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load.
Elastomers and shape memory metals such as Nitinol exhibit large elastic deformation ranges, as does rubber. However, elasticity is nonlinear in these materials. Normal metals, ceramics and most crystals show linear elasticity and a smaller elastic range. Linear elastic deformation is governed by Hooke's law, which states:
In linear elasticity, the equations describing the deformation of an elastic body subject only to surface forces (or body forces that could be expressed as potentials) on the boundary are (using index notation) the equilibrium equation: , =
The deformation index is a parameter that specifies the mode of control under which time-varying deformation or loading processes occur in a solid. It is useful for evaluating the interaction of elastic stiffness with viscoelastic [ 1 ] or fatigue behavior.
In physics and continuum mechanics, deformation is the change in the shape or size of an object. It has dimension of length with SI unit of metre (m). It is quantified as the residual displacement of particles in a non-rigid body, from an initial configuration to a final configuration, excluding the body's average translation and rotation (its rigid transformation). [1]
This is known as perfect elasticity, in which a given object will return to its original shape no matter how strongly it is deformed. This is an ideal concept only; most materials which possess elasticity in practice remain purely elastic only up to very small deformations, after which plastic (permanent) deformation occurs.
The elastic components, as previously mentioned, can be modeled as springs of elastic constant E, given the formula: = where σ is the stress, E is the elastic modulus of the material, and ε is the strain that occurs under the given stress, similar to Hooke's law.