Search results
Results from the WOW.Com Content Network
DNA extraction; Phenol–chloroform extraction; Minicolumn purification; RNA extraction; Boom method; ... This page was last edited on 20 July 2024, at 20:42 (UTC).
The first isolation of deoxyribonucleic acid (DNA) was done in 1869 by Friedrich Miescher. [1] DNA extraction is the process of isolating DNA from the cells of an organism isolated from a sample, typically a biological sample such as blood, saliva, or tissue. It involves breaking open the cells, removing proteins and other contaminants, and ...
Nucleic acid extraction apparatus based on the Tajima pipette [14] [15] (see Fig. 2) are one of the most widespread instruments to perform the Boom method. [ 25 ] The Tajima pipette was invented by Hideji Tajima, [ 14 ] founder and president of Precision System Sciences (PSS) [ 25 ] Inc., a Japanese manufacturer of precision and measuring ...
For example, the positive charge of ethidium bromide can reduce the DNA movement by 15%. [12] Agarose gel electrophoresis can be used to resolve circular DNA with different supercoiling topology. [16] DNA damage due to increased cross-linking will also reduce electrophoretic DNA migration in a dose-dependent way. [17] [18]
The most common method is alkaline lysis, which involves the use of a high concentration of a basic solution, such as sodium hydroxide, to lyse the bacterial cells. [15] [16] [17] When bacteria are lysed under alkaline conditions (pH 12.0–12.5) both chromosomal DNA and protein are denatured; the plasmid DNA however, remains stable.
Double-stranded DNA fragments naturally behave as long rods, so their migration through the gel is relative to their size or, for cyclic fragments, their radius of gyration. Circular DNA such as plasmids, however, may show multiple bands, the speed of migration may depend on whether it is relaxed or supercoiled. Single-stranded DNA or RNA tends ...
Gel extraction kits are available from several major biotech manufacturers for a final cost of approximately 1–2 US$ per sample. Protocols included in these kits generally call for the dissolution of the gel-slice in 3 volumes of chaotropic agent at 50 °C, followed by application of the solution to a spin-column (the DNA remains in the column), a 70% ethanol wash (the DNA remains in the ...
The highest DNA adsorption efficiencies occur in the presence of buffer solution with a pH at or below the pKa of the surface silanol groups. The mechanism behind DNA adsorption onto silica is not fully understood; one possible explanation involves reduction of the silica surface's negative charge due to the high ionic strength of the buffer.