Search results
Results from the WOW.Com Content Network
Classical conditioning occurs when a conditioned stimulus (CS) is paired with an unconditioned stimulus (US). Usually, the conditioned stimulus is a neutral stimulus (e.g., the sound of a tuning fork), the unconditioned stimulus is biologically potent (e.g., the taste of food) and the unconditioned response (UR) to the unconditioned stimulus is an unlearned reflex response (e.g., salivation).
In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem , and it relates the distribution of electric charge to the resulting electric field .
Gauss's principle is equivalent to D'Alembert's principle. The principle of least constraint is qualitatively similar to Hamilton's principle, which states that the true path taken by a mechanical system is an extremum of the action. However, Gauss's principle is a true (local) minimal principle, whereas the other is an extremal principle.
An example of second-order conditioning. In classical conditioning, second-order conditioning or higher-order conditioning is a form of learning in which a stimulus is first made meaningful or consequential for an organism through an initial step of learning, and then that stimulus is used as a basis for learning about some new stimulus.
Van Hamme and Wasserman have extended the original Rescorla–Wagner (RW) model and introduced a new factor in their revised RW model in 1994: [3] They suggested that not only conditioned stimuli physically present on a given trial can undergo changes in their associative strength, the associative value of a CS can also be altered by a within-compound-association with a CS present on that trial.
Spontaneous recovery is associated with classical conditioning, a learning process in which an organism learns to associate a neutral stimulus with a stimulus that produces an unconditioned response. As a result, the previously neutral stimulus comes to produce its own response, which is usually similar to that produced by the unconditioned ...
In Kamin's blocking effect [1] the conditioning of an association between two stimuli, a conditioned stimulus (CS) and an unconditioned stimulus (US) is impaired if, during the conditioning process, the CS is presented together with a second CS that has already been associated with the unconditioned stimulus.
In the latter two examples the law of total probability is irrelevant, since only a single event (the condition) is given. By contrast, in the example above the law of total probability applies, since the event X = 0.5 is included into a family of events X = x where x runs over (−1,1), and these events are a partition of the probability space.