Search results
Results from the WOW.Com Content Network
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
If an airplane's altitude at time t is a(t), and the air pressure at altitude x is p(x), then (p ∘ a)(t) is the pressure around the plane at time t. Function defined on finite sets which change the order of their elements such as permutations can be composed on the same set, this being composition of permutations.
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
The problem to determine all positive integers such that the concatenation of and in base uses at most distinct characters for and fixed [citation needed] and many other problems in the coding theory are also the unsolved problems in mathematics.
The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3] Given the number of problems (55 in total), just a few are presented here. The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and ...
For the example below, there are four sides: A, B, C and the final result ABC. A is a 10×30 matrix, B is a 30×5 matrix, C is a 5×60 matrix, and the final result is a 10×60 matrix. The regular polygon for this example is a 4-gon, i.e. a square: The matrix product AB is a 10x5 matrix and BC is a 30x60 matrix.
The "diamond problem" (sometimes referred to as the "Deadly Diamond of Death" [6]) is an ambiguity that arises when two classes B and C inherit from A, and class D inherits from both B and C. If there is a method in A that B and C have overridden , and D does not override it, then which version of the method does D inherit: that of B, or that of C?
As is common for complexity classes within the polynomial time hierarchy, a problem is called GI-hard if there is a polynomial-time Turing reduction from any problem in GI to that problem, i.e., a polynomial-time solution to a GI-hard problem would yield a polynomial-time solution to the graph isomorphism problem (and so all problems in GI).