Search results
Results from the WOW.Com Content Network
Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater than 100 kilograms.
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force. [2]
The slug is defined as the amount of mass that accelerates at 1 ft/s 2 when one pound-force is exerted on it, and is equivalent to about 32.2 pounds (mass). The kilogram-force is a non-SI unit of force, defined as the force exerted by a one-kilogram mass in standard Earth gravity (equal to 9.80665 newtons exactly).
Magnitude Value Item 1 N 1.4 N The weight of a smartphone [13] [14]: 2.5 N Typical thrust of a Dual-Stage 4-Grid ion thruster.: 9.8 N One kilogram-force, nominal weight of a 1 kg (2.2 lb) object at sea level on Earth [15]
Units for other physical quantities are derived from this set as needed. In English Engineering Units, the pound-mass and the pound-force are distinct base units, and Newton's Second Law of Motion takes the form = where is the acceleration in ft/s 2 and g c = 32.174 lb·ft/(lbf·s 2).
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
On the surface of the Earth, for example, an object with a mass of 50 kilograms weighs 491 newtons, which means that 491 newtons is being applied to keep the object from going into free fall. By contrast, on the surface of the Moon, the same object still has a mass of 50 kilograms but weighs only 81.5 newtons, because only 81.5 newtons is ...