enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    Careful experiments have shown that the inertial mass on the left side and gravitational mass on the right side are numerically equal and independent of the material composing the masses. The equivalence principle is the hypothesis that this numerical equality of inertial and gravitational mass is a consequence of their fundamental identity.

  3. Eötvös experiment - Wikipedia

    en.wikipedia.org/wiki/Eötvös_experiment

    As seen from the Earth's frame of reference (or "lab frame", which is not an inertial frame of reference), the primary forces acting on the balanced masses are the string tension, gravity, and the centrifugal force due to the rotation of the Earth. Gravity is calculated by Newton's law of universal gravitation, which depends on gravitational mass.

  4. Mass - Wikipedia

    en.wikipedia.org/wiki/Mass

    This is sometimes referred to as gravitational mass. [note 1] Repeated experiments since the 17th century have demonstrated that inertial and gravitational mass are identical; since 1915, this observation has been incorporated a priori in the equivalence principle of general relativity.

  5. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    Support for this principle is found in the Eötvös experiment, which determines whether the ratio of inertial to gravitational mass is the same for all bodies, regardless of size or composition. To date no difference has been found to a few parts in 10 11 . [ 33 ]

  6. Mach's principle - Wikipedia

    en.wikipedia.org/wiki/Mach's_principle

    Inertial mass is affected by the global distribution of matter. If you take away all matter, there is no more space. Ω = def 4 π ρ G T 2 {\displaystyle \Omega \ {\stackrel {\text{def}}{=}}\ 4\pi \rho GT^{2}} is a definite number, of order unity, where ρ {\displaystyle \rho } is the mean density of matter in the universe, and T ...

  7. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    The term mass in special relativity usually refers to the rest mass of the object, which is the Newtonian mass as measured by an observer moving along with the object. The invariant mass is another name for the rest mass of single particles. The more general invariant mass (calculated with a more complicated formula) loosely corresponds to the ...

  8. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The mass–energy equivalence in special relativity refers to the inertial mass. However, already in the context of Newtonian gravity, the weak equivalence principle is postulated: the gravitational and the inertial mass of every object are the same. Thus, the mass–energy equivalence, combined with the weak equivalence principle, results in ...

  9. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...