Search results
Results from the WOW.Com Content Network
Note that, given the logarithmic characteristics of Hz, for both music and speech perception results should not be reported in Hz but either as percentages or in STs (5 Hz between 20 and 25 Hz is very different from 5 Hz between 2000 and 2005 Hz, but an ~18.9% or 3 semitone increase is perceptually the same size difference, regardless of ...
For a given sampling rate (samples per second), the Nyquist frequency (cycles per second) is the frequency whose cycle-length (or period) is twice the interval between samples, thus 0.5 cycle/sample. For example, audio CDs have a sampling rate of 44100 samples/second. At 0.5 cycle/sample, the corresponding Nyquist frequency is 22050 cycles/second .
It may refer more specifically to two subcategories: Passband bandwidth is the difference between the upper and lower cutoff frequencies of, for example, a band-pass filter, a communication channel, or a signal spectrum. Baseband bandwidth is equal to the upper cutoff frequency of a low-pass filter or baseband signal, which includes a zero ...
A typical choice of characteristic frequency is the sampling rate that is used to create the digital signal from a continuous one. The normalized quantity, f ′ = f f s , {\displaystyle f'={\tfrac {f}{f_{s}}},} has the unit cycle per sample regardless of whether the original signal is a function of time or distance.
First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.
Simply, in the continuous-time case, the function to be transformed is multiplied by a window function which is nonzero for only a short period of time. The Fourier transform (a one-dimensional function) of the resulting signal is taken, then the window is slid along the time axis until the end resulting in a two-dimensional representation of the signal.
This dual threshold action is called hysteresis and implies that the Schmitt trigger possesses memory and can act as a bistable multivibrator (latch or flip-flop). There is a close relation between the two kinds of circuits: a Schmitt trigger can be converted into a latch and a latch can be converted into a Schmitt trigger.
The cutoff frequency is the critical frequency between propagation and attenuation, which corresponds to the frequency at which the longitudinal wavenumber is zero. It is given by ω c = c ( n π a ) 2 + ( m π b ) 2 {\displaystyle \omega _{c}=c{\sqrt {\left({\frac {n\pi }{a}}\right)^{2}+\left({\frac {m\pi }{b}}\right)^{2}}}} The wave equations ...