Search results
Results from the WOW.Com Content Network
The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (/ d ə ˈ b r ɔɪ /) in 1924, and so matter waves are also known as de Broglie waves. The de Broglie wavelength is the wavelength, λ, associated with a particle with momentum p through the Planck constant, h: =.
Louis de Broglie's early results on the pilot wave theory were presented in his thesis (1924) in the context of atomic orbitals where the waves are stationary.Early attempts to develop a general formulation for the dynamics of these guiding waves in terms of a relativistic wave equation were unsuccessful until in 1926 Schrödinger developed his non-relativistic wave equation.
This concept is known as the de Broglie hypothesis, an example of wave-particle duality, and forms a central part of the theory of quantum mechanics. De Broglie won the Nobel Prize in Physics in 1929, after the wave-like behaviour of matter was first experimentally demonstrated in 1927.
Matter waves were first proposed by Louis de Broglie and are sometimes called de Broglie waves. They form a key aspect of wave–particle duality and experiments have since supported the idea. The wave associated with a particle of a given mass, such as an atom , has a defined frequency , and a change in the duration of one cycle from peak to ...
The equation says the matter wave frequency in vacuum varies with wavenumber (= /) in the non-relativistic approximation. The variation has two parts: a constant part due to the de Broglie frequency of the rest mass ( ℏ ω 0 = m 0 c 2 {\displaystyle \hbar \omega _{0}=m_{0}c^{2}} ) and a quadratic part due to kinetic energy.
In the framework of the de Broglie–Bohm theory, the quantum potential is a term within the Schrödinger equation which acts to guide the movement of quantum particles. . The quantum potential approach introduced by Bohm [1] [2] provides a physically less fundamental exposition of the idea presented by Louis de Broglie: de Broglie had postulated in 1925 that the relativistic wave function ...
Using the de Broglie relations for energy and momentum for matter waves, =, =, where ω is the angular frequency and k is the wavevector with magnitude | k | = k, equal to the wave number, the energy–momentum relation can be expressed in terms of wave quantities:
The Davisson–Germer experiment confirmed the de Broglie hypothesis that matter has wave-like behavior. This, in combination with the Compton effect discovered by Arthur Compton (who won the Nobel Prize for Physics in 1927), [9] established the wave–particle duality hypothesis which was a fundamental step in quantum theory.